Using rna structures in living cells as programmable sensors and controllers for cellular behavior, scientists can design and engineer molecules, and molecular structures working together, such as to emit heat, or move in a direction.
Slideshow with descriptions:
Synthetic biology is the engineering and construction of molecular devices that work inside cells. The construction materials are restriction enzymes to cut DNA, polymerases to copy DNA and RNA, ribosomes to translate RNA into protein, and myriad chemical tricks for finishing touches.
Crystals can grow in surprisingly complex ways. Synthetic bismuth crystals grow as square-angled spiral staircases. With the ability to design macromolecules, it’s now possible to create crystals with a programmed growth path, and which can “intelligently” respond to obstacles it encounters.
A cell’s cytoskeleton consists of a network of molecular-scale “I beams” that hold the cell in its shape. Some engineered cells can crawl by growing their cytoskeleton on one side while dissolving it on the other side.
Molecular engineers can design and synthesize complex polymers that grow in almost lifelike ways. Like a spider, an engineered molecule can trigger insertion of polymer subunits behind it, thus effectively “excreting” a thread to which it remains attached. As engineering frontiers expand, even more lifelike behaviors will be attainable.